Graph partitioning and graph neural network based hierarchical graph matching for graph similarity computation
نویسندگان
چکیده
Graph similarity computation aims to predict a score between one pair of graphs facilitate downstream applications, such as finding the most similar chemical compounds query compound or Fewshot 3D Action Recognition. Recently, some graph models based on neural networks have been proposed, which are either graph-level interaction node-level comparison. However, when number nodes in increases, it will inevitably bring about reduced representation ability high cost. Motivated by this observation, we propose partitioning and network-based model, called PSimGNN, effectively resolve issue. Specifically, each input is partitioned into set subgraphs extract local structural features directly. Next, novel network with an attention mechanism designed map subgraph embedding vector. Some these pairs automatically selected for comparison supplement subgraph-level fine-grained information. Finally, coarse-grained information among different integrated final score. Experimental results datasets sizes demonstrate that PSimGNN outperforms state-of-the-art methods tasks using approximate Edit Distance (GED) metric.
منابع مشابه
Graph Similarity and Matching
Measures of graph similarity have a broad array of applications, including comparing chemical structures, navigating complex networks like the World Wide Web, and more recently, analyzing different kinds of biological data. This thesis surveys several different notions of similarity, then focuses on an interesting class of iterative algorithms that use the structural similarity of local neighbo...
متن کاملdynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولGraph Partitioning and Graph Clustering
We present an overview over our graph partitioners KaFFPa (Karlsruhe Fast Flow Partitioner) and KaFFPaE (KaFFPa Evolutionary). KaFFPa is a multilevel graph partitioning algorithm which on the one hand uses novel local improvement algorithms based on max-flow and min-cut computations and more localized FM searches and on the other hand uses more sophisticated global search strategies transferred...
متن کاملHierarchical Directed Spectral Graph Partitioning
In this report, we examine the generalization of the Laplacian of a graph due to Fan Chung. We show that Fan Chung’s generalization reduces to examining one particular symmetrization of the adjacency matrix for a directed graph. From this result, the directed Cheeger bounds trivially follow. Additionally, we implement and examine the benefits of directed hierarchical spectral clustering empiric...
متن کاملGraph partitioning for scalable distributed graph computations
Inter-node communication time constitutes a significant fraction of the execution time of graph algorithms on distributed-memory systems. Global computations on large-scale sparse graphs with skewed degree distributions are particularly challenging to optimize for, as prior work shows that it is difficult to obtain balanced partitions with low edge cuts for these graphs. In this work, we attemp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2021
ISSN: ['0925-2312', '1872-8286']
DOI: https://doi.org/10.1016/j.neucom.2021.01.068